
From Examples to Bayesian Inference

Francesco A. N. PALMIERI a,1, Domenico CIUONZO a Davide MATTERA b

Gianmarco ROMANO a Pierluigi SALVO ROSSI a
a Seconda Università di Napoli (SUN), Italy

b Universitá di Napoli Federico II, Italy

Abstract. We show how to build an associative memory from a finite list of ex-
amples. By means of a fully-blown example, we demostrate how a probabilistic
Bayesian factor graph can integrate naturally the discrete information contained in
the list with smooth inference.

Keywords. Bayesian Networks, Artificial Intelligence, Propagation of Belief

Introduction

Belief propagation techniques on graphs [2] provide a very promising paradigm for a
merge of probability theory and logic [1]. In many applications of communications, ar-
tificial intelligence and digital signal processing [4], Bayesian methods have already de-
mostrated how they can integrate smoothly observations and previous knowledge. The
idea of “injecting” in a graph our current observations, and “collecting” the response of
the system after belief propagation, can be very useful in providing dynamic inference
and support to human decision making.

The Bayesian paradigm seems to be the most “natural” framework on which build
adaptive memories, that are generalizations of common logic lists and imperfect knowl-
edge. Most hypotheses about brain functioning [3], seem to indicate that memory is a
distributed ”hardwired” property of the neural network, and that it is bidirectional, hier-
achical and inferential.

In our group we have started a combined effort to approach a number of data fusion
problems where the challenge is to integrate very heterogeneous data. Systems that can
learn directly from the observations the mutual relations among variables, and store them
into a distributed graph for subsequent inferences, can have a substantial impact on the
applications. Unfortunately the success of a Bayesian network is mainly related to learn-
ing the most appropriate graph. Clearly if the graph structure is known, we have to solve
a parametric problem in learning the node parameters and this is usually achieved using a
distributed version of the Expectation Maximization (EM) algorithm. Conversely, much
more challenging is the problem of learning the network structure. Previous contribu-
tions have appeared in the literature to approach this task such as the famous Chow and
Liu’s algorithm [8] which grows a tree using second-order mutual information. Other

1Corresponding Author: Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli, via
Roma 29, 81031 Aversa (CE), Italy; E-mail: francesco.palmieri@unina2.it.

Neural Nets WIRN11
B. Apolloni et al. (Eds.)
IOS Press, 2011
© 2011 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-972-1-97

97

methods, such as Kutato and K2 [12], are based on entropy estimations. Also C4.5 algo-
rithms [10] suggest how to build decision trees from examples. Mixtures of trees have
also been proposed in [11], and trees based on greedy searches have been demonstrated
in [14]. Also, module networks, proposed by Segal et al. [15], are based on information
trees with homogeneous groups.

In our work we focus on bottom-up unsupervised tree construction with emphasis
on the Factor Graph (FG) formulation [5] [4], that assigns variables to edges, and func-
tions to blocks. Factor Graphs resemble common block-diagrams and seem to provide
an easier path to VLSI and FPGA hardware realizations.

We show by means of a fully-blown toy example how to build an associative mem-
ory from examples. Even though the available data is just a discrete list of strings, embed-
ding the examples into a probabilistic factor graph allows natural smooth access when
knowledge is partial or noisy.

1. Associative Recall

Consider a string of variables X = (X1, X2, ..., XN) that belong to the finite alpha-
bets X1,X2, ...,XN . Suppose that we know nothing about the model that generates these
variables, but we have available a finite list of examples x[i] = (x1[i], x2[i], ..., xN [i]),
i = 1, ..., �. Direct memorization of this information would be based on � memory regis-
ters of N cells with each cell capable of storing |X1|, |X2|, ..., |XN | symbols respectively,
where |Xi| denotes the cardinality of alphabet Xi.

Standard Address-Based Recall (ABR) consists in providing an index that identifies
the position of the desired word in a list. A much more general approach for information
retrieval is to perform a so-called Associative Recall (AR): query the memory with a
string y = (y1, y2, ..., yN), wich represents one of the memories x with partially missing
and/or erroneous elements; according to a pre-specified retrieval algorithm replace y
with a best guess x̂, possibly providing a level of confidence about it.

Note that AR includes as a special case ABR: it is sufficient to assign to one of the
variables the role of the example index, say X1, and query the memory with a string with
all elements missing, except the first one.

Associative recall is much more natural mechanism of accessing stored memories
in comparison to simple lists. For example, error-correcting codes, erasure codes, text
parsers, all operate in this fashion. Also neural systems seem to be based mainly on an
associative mechanism. Furthermore, the AR paradigm allows us to build a probabilistic
model of our data that can interact smoothly with stored discrete examples and provide
soft inferences from imperfect knowledge.

From a probabilistic point of view, N variables (X1, X2, ..., XN) are fully charac-
terized by their joint probability mass function p(x1, x2, ..., xN) [2]. All the mutual inter-
actions among the variables is contained in the structure of p which can be very compli-
cated and unknown. The function p may represent the structure of a code, a specific gen-
erative model, a set of examples, a logic rule that ties the variables together, etc. Access
to the information can be obtained via marginalization. For example, if the variable Xi is
available, i.e. p(xi) = δ(xi−ξi), complete information about all the other variables is ob-
tainable from the density p(x1, x2, ., ξi, .., xN). For example, if we are interested only in
another variable, say Xj , the marginal density p(xj) =

∑
xn,n �=j,i p(x1, x2, ., ξi, .., xN)

F.A.N. Palmieri et al. / From Examples to Bayesian Inference98

represents the stored information about it. The beauty of the probabilistic framework is
that the result of marginalization is a probability density that automatically provides a
level of confidence about the answer. A further advantage is that our query can be based
on uncertain knowledge (not a delta function) and the system can still be interrogated for
a smooth comparison to the stored memory.

Marginalization, of course, can become a formidable task as N grows. However,
if the density p is embedded into a loosely connected graph, via message propagation,
marginalization can become feasible. Chains, trees, and other graphical structures are
commonly used in coding and stochastic modeling as they provide efficient ways to per-
form inference in many applications [2][4]. When the graphs have loops, approxima-
tions, or more complicated algorithms, must be used for inference. However, in most of
these cases the graph structure is known a priori, or imposed on the problem.

We focus on the challenging problem of ”learning” the structure of the graphical
model only from the examples.

In this paper we show, via a toy example, how to build a a hierarchical tree by
clustering variables together in a progressive order. The tree has no loops and can be
immediately used for belief propagation. We have presented a similar experiment in [7]
where the examples were extracted from a Hamming code. The small-scale example that
we present here suggests that the idea can be scaled-up with more complex data and
become a feasible proposal for a universal associative memory.

2. Example

Consider the list of nine examples shown in Figure 1. Each example appears only once
and the six variables have different alphabets. The various sets, their number of oc-
curences and their marginal entropies are also shown.

In the first step of this construction we group the variables in pairs (X1X2), (X3X4),
(X5X6), as in Figure 2. After recording and counting their occurences, we define new
variables Y1, Y2, Y3. The new variables are a more compact representation of the possi-
ble pairs because some configurations are repeated more than once and some never hap-
pen. Note that the cardinality of the new alphabets is generally smaller than the dimen-
sion of the product space for each pair. In larger scale applications, the cardinality of the
new variable it is expected to be of the order of the cardinality of the respective typi-
cal sets {2H(X1X2), 2H(X3X4), 2H(X5X6)}. In this small-scale example, all the pairs are
coded in the new variables, hence H(Y1) = H(X1X2), H(Y2) = H(X3X4), H(Y3) =
H(X5X6). The dependence within each pair is reflected in their mutual information. Ex-
cept for the first pair where I(X1;X2) = H(X1) +H(X2) −H(Y1) = 0, because X1

does not change and has zero entropy, I(X3;X4) = H(X3)+H(X4)−H(Y2) = 1.3921
and I(X5;X6) = H(X5) + H(X6) − H(Y3) = 0.5033 (all the values are in bit).
With the further grouping of Y1 and Y2 we build a new variable Z1 that has cardi-
nality nine. Again, the coding is with no loss, i.e H(Z1) = H(Y1Y2) and the mu-
tual information is I(Y1;Y2) = H(Y1) + H(Y2) − H(Z1) = 1.0861. The last group-
ing of Z1 with Y3 defines V that completes the tree. Again H(Z1Y3) = H(V) and
I(Z1;Y3) = H(Z1) + H(Y3) − H(V) = 0.5033. Note that the entropy of V is the
entropy of the whole set of examples. The grouping order is clearly only one of the many
possible ones. We will comment about this issue later in the paper. Figure 3 shown the

F.A.N. Palmieri et al. / From Examples to Bayesian Inference 99

X1 X2 X3 X4 X5 X6

B E A T b b
B I T b b b
B A I T b b
B E T b b b
B A T b b b
B O O T b b
B O A T b b
B O U G H T
B U T b b b

X1 = {B}; # = {9}; H(X1) = 0
X2 = {E, I,A,O,U}; # = {2, 1, 2, 3, 1}; H(X2) = 2.1972
X3 = {A,T, I,O,U}; # = {2, 4, 1, 1, 1}; H(X3) = 2.0588
X4 = {T, b,G}; # = {4, 4, 1}; H(X4) = 1.3921
X5 = {b,H}; # = {8, 1}; H(X5) = 0.5033
X6 = {b,T}; # = {8, 1}; H(X6) = 0.5033

Figure 1. The list of examples, the variable alphabets with the number of occurrences (#) and the marginal
entropies. Character “b" denotes a “blank".

X1 X2 Y1(#)
B E 1 (2)
B I 2 (1)
B A 3 (2)
B O 4 (3)
B U 5 (1)

X3 X4 Y2(#)
A T 1 (2)
T b 2 (4)
I T 3 (1)
O T 4 (1)
U G 5 (1)

X5 X6 Y3(#)
b b 1 (8)
H T 2 (1)

H(Y1) = 2.1972 H(Y2) = 2.0588 H(Y3) = 0.5033

Y1 Y2 Z1(#)
1 1 1 (1)
2 2 2 (1)
3 3 3 (1)
1 2 4 (1)
3 2 5 (1)
4 4 6 (1)
4 1 7 (1)
4 5 8 (1)
5 2 9 (1)

Z1 Y3 V (#)
1 1 1 (1)
2 1 2 (1)
3 1 3 (1)
4 1 4 (1)
5 1 5 (1)
6 1 6 (1)
7 1 7 (1)
8 2 8 (1)
9 1 9 (1)

H(Z1) = 3.1699
H(V) = 3.1699

Figure 2. The group occurrences and their associations to the new alphabets with the corresponding entropies.

tree in factor graph form (normal form) [5]. The thin vertical blocks represent the “="
contraints and they are associated to multiple names for the same variable. They act like
“buses” because their outgoing messages are simply the product of the incoming ones
[6]. The other blocks represent the conditional probability matrices for our generative
model. The function that they represent are deterministic because the trasformation from
the right to the left has no uncertainty. Vice versa, information from the left to the right is

F.A.N. Palmieri et al. / From Examples to Bayesian Inference100

Figure 3. The factor graph in normal form with forward and backward messages shown.

ambiguous and must be resolved with message propagation, as we will see in the follow-
ing. All the examples are “hard-wired" in the tree in a distributed fashion and message
propagation will sort through their structure.

The matrices representing the various blocks are immediately deducted from the
tables of Figure 2.

P (X1|Y1) =

⎛
⎜⎜⎝

1
1

1
1
1

⎞
⎟⎟⎠ ; P (X2|Y1) = P (X3|Y2) = I5×5;P (X4|Y2) =

⎛
⎜⎜⎝

1 0 0
0 1 0

1 0 0
1 0 0
0 0 1

⎞
⎟⎟⎠ ;

P (X5|Y3) = P (X6|Y3) = I2×2;P (Y1|Z1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
1 0 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; P (Y2|Z1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 1 0 0 0
0 1 0 0 0

0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

P (Z1|V) = I9×9; P (Y3|V) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1 0
1 0
1 0
1 0

1 0
1 0
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

P0(V) is uniform on the nine elements since all the examples occur only once.

P (X2|Y1)

P (X3|Y2)

P (X4|Y2)

P (X5|Y3)

P (X6|Y3)

P (Y1|Z1)

P (Y2|Z1)

P (Z1|V)

P (Y3|V)

P0(V)

P (X1|Y1)

�

f

b

�

��

�

��

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

��

��
�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� Y 2
1

Y 3
1

Y 1
1

Y 2
2

Y 3
2

Y 1
2

Y 2
3

Y 3
3

Y 1
3

Z2
1

Z3
1

Z1
1 V 2

V 3

V 1

X2

X3

X1

X4

X5

X6

F.A.N. Palmieri et al. / From Examples to Bayesian Inference 101

3. Associative recall

Memory access can be obtained via message propagation using the usual sum-product
rules of Bayesian factor graphs [6]. More specifically, we access the memory by injecting
backward messages at the terminal nodes. A variable can be: 1. known (instantiated)
-> the backward message is delta distribution; 2. completely unknown (erased) -> the
backward message is a uniform distribution; 3. known softly -> the backward message is
a density. In all cases after message propagation the associative memory responds with a
forward message that is a smooth comparison with the stored memories. The final recall
is the normalized product of backward and forward message. To see how this idea is
applied to our small example, we have implemented a complete message propagation
system in Matlab.
Initialization: Before running any inference, the system has to be initialized. Ac-
tually the initial configurations could be arbitrary, but proper initialization can pro-
duce faster and cleaner convergence. Since the priors about all the variables are hard-
wired in the system, the forward messages fX1, ..., fXN converge to the marginal
priors if we inject uniform distributions on bX1, ..., bXN and let the system run for
a few steps (with arbitrary primordial initial conditions): fX1 = (1.0000), fX2 =
(.2222, .1111, .2222, .3333, .1111), fX3 = (.2222, .4444, .1111, .1111, .1111), fX4 =
(.4444, .4444, .1111), fX5 = (.8889, .1111), fX6 = (.8889, .1111). Also the other
variables fY11, fY12, fY13 converge to the prior of Y1, etc. (not shown for simplicity).
The priors for all the variables reflect the number of occurrences shown in the tables of
Figure 2 (everything is embedded into the tree). Note that the maximum number of steps
is equal to the graph diameter. In our realization, we run the system synchronously and
at every clock cycle there is an evolution across each blocks. The maximum number of
steps to go from a leaf to another leaf is nine.
Pattern completion: Suppose that we have available only a subset of variables and we
need to acces the memory to complete it. For example, assume evidence "?OA???", i.e.
only X2 and X3 are known. This is equivalent to inject the following backward mes-
sages at the leaves: bX1 = U1; bX2 = δ5(4); bX3 = δ5(1); bX4 = U3; bX5 = U2;
bX6 = U2, where Un denotes the uniform distribution over n elements and δn(i) de-
notes a distribution over n elements with all zeros, except the ith that is equal to one.
After three steps the inference about X1 and X4 are already completed with fX1 = (1)
("B"), fX4 = (1, 0, 0) ("T"), while fX5 = (.8889, .1111) and fX6 = (.8889, .1111),
still show their priors. After 9 steps fX5 = (1, 0) ("b"), fX6 = (1, 0) ("b") and the
string is perfectly reconstructed. Characters X1 and X4 di not need to "call" the tree root
because they could be resolved at the lowest hierachical level in only three steps. Vice
versa X5 and X6 need the information to flow through the upper part of the tree to be
estimated. This example shows that local dependence can be exploited for reconstruction
and messages do not have necessarily reach the higher hierarchical levels to provide the
answer.
Ask for an opinion: More generally, we may have available a distribution about a sub-
set of the variables (perhaps coming from another inference system). We can ask our as-
sociative memory to verify the coherence of our information with the stored memories.
In our example suppose that we inject the following backward messages bX1 = (1.),
bX2 = (0, 0, 0, .5, .5), bX3 = (.5, 0, 0, .5, 0), bX4 = (.2, .6, .2), bX5 = (.7, .3),
bX6 = (.1, .9). The messages reflect the fact that we are not sure about the values of the

F.A.N. Palmieri et al. / From Examples to Bayesian Inference102

Si Xi
� �P (Si|Xi)

�
�

�
�

b b

f f

Figure 4. The error model for each leaf variable i = 1, ..., N .

six variables. More specifically, we think that X2 can be either "O" or "U" with equal
confidence. Also we infer that X3 may be either "A" or "U". Similarly more uncertainties
are available on the other variables. We let the message propagate in the tree and after
convergence we get the following forward messages at the leafs: fX1 = (1), fX2 =
(.3333, .0000, .0000, .6667, .0000), fX3 = (.1129, .3387, .0000, .1129, .4355), fX4 =
(1.0000, .0000, .0000), fX5 = (1.0000, .0000), fX6 = (1.0000, .0000). The result
means that with that information available the string (X4X5X6) must be corrected
to (Tbb); X2 can be either "E" or "U" with different probabilities and X3 can be
"A","T","O" or "U" with different probabilities; X1 is always "B". The answer that
accounts for both opinions can be obtained by computing the normalized products
pXi = bXi · fXi/|bXi · fXi|, i = 1, ..., N . In this example pX1 = (1.0000),
pX2 = (.0000, .0000, .0000, 1.0000, .0000), pX3 = (.5, .0000, .0000, .5000, .0000),
pX4 = (1.0000, .0000, .0000), pX5 = (1.0000, .0000), pX6 = (1.0000, .0000). Only
X3 remains unsolved and can be either "A" or "U" with equal probabilities.
Error correction: The hierarchical memory can be easily adapted to perform also
error correction. To this purpose we add to the tree the error model of Figure 4 at
the leaves. If we allow each character of Xi to be confused with any other of the
same set with equal probability: P (Si|Xi) = (1 − pe,

pe

|Xi|−1 , ...,
pe

|Xi|−1 ;
pe

|Xi|−1 , 1 −
pe, ...,

pe

|Xi|−1 ;... ;
pe

|Xi|−1 , ...,
pe

|Xi|−1 , 1 − pe), i = 1, ..., N , where pe is the error prob-
ability. We assume an error probability pe = 0.1 and present to the leafs the string
”BOObbT”. The backward messages injected are bS1 = (1), bS2 = (0, 0, 0, 1, 0),
bS3 = (0, 0, 0, 1, 0), bS4 = (0, 1, 0), bS5 = (1, 0), bS6 = (0, 1). After 12 iterations
we get forward and backward messages for X1....X6 and compute pX1 = (1.0000),
pX2 = (.0132, .0125, .0132, .9487, .0125), pX3 = (.0257, .0499, .0007, .8988, .0250),
pX4 = (.9251, .0499, .0250), pX5 = (.9750, .0250), pX6 = (.9750, .0250). The mem-
ory suggests to shift belief towards ”BOOTbb”.

4. Discussion

The example presented above shows how on a small Bayesian hierarchy the inference
flow may automatically remain confined to low layers, or may “call” higher nodes, ac-
cording to the necessary dependence to be exploited. This is because in some cases lo-
cal dependences suffices, while in others it is necessary to look at the information at a
more global scale. The potential of the Bayesian trees is then related to its capability,
through compound variables, to account for high-order dependences. We believe that the
limited success of growing algorithms such as of Chow and Liu’s [8] comes from be-
ing confined second-order mutual information. Also mixtures of Chow and Liu’s net-

F.A.N. Palmieri et al. / From Examples to Bayesian Inference 103

works [11] do not seem to go much further. Clearly, the natural sketicism about building
large-scale trees is the combinatorial explosion that this seems to produce. However, we
maintain that if the tree construction is constrained to small groups and to appropriate
partitions, efficient and feasible associative memories can be built. Recall that the infor-
mation globally exchanged among m variables is described by the mutual information
I(X1;X2; ...;Xm) =

∑m
i=1 H(Xi)−H(X1X2...Xm). If the variables are independent,

the mutual information is null and there is no structure because p is simply the prod-
uct of m marginal densities. However, in most practical cases the dependence is dis-
tributed among the variables in structured form and the cardinality of the typical set for
(X1X2...Xm) is 2H(X1X2...Xm) that can be much smaller than 2

∑m

i=1
H(Xi). Efficient

algorithm for variable partitions are currently under investigation and will be reported
elsewhere.

References

[1] E. T. Jaynes, Probability Theory : The Logic of Science, Cambridge University Press, 2003.
[2] J. Pearl, Probabilistic Reasoning in Intelligent Systems, 2nd ed. San Francisco: Morgan

Kaufmann, 1988.
[3] J. Hawkins, On Intelligence, Times Books, 2004.
[4] H. A. Loeliger, “An Introduction to Factor Graphs,” IEEE Signal Processing Magazine, pp.

28-41, Jan 2004.
[5] G. D. Forney, Jr., “Codes on graphs: normal realizations, ” IEEE Trans. Information Theory,

vol. 47, no. 2, pp. 520-548, 2001.
[6] F. Palmieri, “Notes on Factor Graphs,” New Directions in Neural Networks, IOS Press in the

KBIES book series, Proceedings of WIRN 2008, Vietri sul mare, June 2008.
[7] F. Palmieri, G. Romano, P. Salvo Rossi, D. Mattera, “Building a Bayesian Factor Tree From

Examples,” Proceedings of the the 2nd International Workshop on Cognitive Information
Processing, 14-16 June, 2010 Elba Island (Tuscany) - Italy.

[8] C. K. Chow and C. N. Liu, “Approximating Discrete Probability Distributions with Depen-
dence Trees,” IEEE Trans. on Information Theory, Vol. 14, N. 3, May 1968.

[9] J. Cheng, D. A. Bell and W. Liu, “Learning Belief Networks from Data: An Information
Theory Based Approach,” Proceedings of the Sixth ACM International Conference on Infor-
mation and Knowledge Management, Las Vegas, Nevada, 1997.

[10] Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.
[11] M. Meila dn M. I. Jordan, “Learning with Mixtures of Trees,” Journal of Machine Learning

Research, vol. 1, pp. 1-48, October 2000.
[12] E. H. Herskovits and G. F. Cooper, “Kutato: An entropy-driven system for the construction

of probabilistic expert systems from databases,” Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence (pp. 54Ű62), Cambridge, MA, 1990.

[13] D. Heckerman, D. Geiger and D. M. Chickering, “Learning Bayesian Networks: The Com-
bination of Knowledge and Statistical Data,” Machine Learning, Volume 20, Number 3,
September 1995.

[14] A. K. Haynes, “Learning Hidden Structure from Data: A Method for Marginalizing Joint
Distributions Using Minimum Cross-Correlation Error,” Master’s Thesis, University of Illi-
nois at Urbana-Champaign, 1997.

[15] E. Segal, D. Pe’er, A. Regev, D. Koller and N. Friedman, “Learning Module Networks,”
Journal of Machine Learning Research, Vol. 6, pp. 557-588, 2005.

F.A.N. Palmieri et al. / From Examples to Bayesian Inference104

